Netejar a prop de l’espai és molt més difícil del que sembla
El problema de la contaminació espacial preocupa tota la comunitat aeroespacial. Aquests desenvolupaments hipotètics en l'òrbita baixa de la Terra, com la síndrome de Kessler, que prediu que la formació de restes espacials fora de control, han commogut fins i tot els mitjans de comunicació populars. És evident que cal una investigació fonamental per comprendre quin perill té fins i tot un petit fragment i calcular quant estem disposats a pagar per netejar l’espai exterior.
Avui en dia, polítics, científics, tècnics i el públic en general són profundament conscients de la proliferació de deixalles espacials. Gràcies al treball fonamental de J-K. Liouville i Nicholas Johnson, publicats el 2006, entenem que és probable que la taxa de deixalles continuï augmentant en el futur, fins i tot si s’aturen tots els llançaments. La raó d’aquest creixement sostingut són les col·lisions que s’espera que es produeixin entre satèl·lits i etapes de coets ja en òrbita. Això preocupa molt a molts operadors de satèl·lits, que es veuen obligats a prendre les mesures adequades per protegir els seus actius.
Alguns experts creuen que aquests incidents seran només el començament d'una sèrie de col·lisions que faran gairebé impossible accedir a l'òrbita terrestre baixa. Aquest fenomen, que va ser descrit per primera vegada amb detall pel consultor de la NASA Donald Kessler, es coneix comunament com a síndrome de Kessler. Però és probable que la realitat sigui molt diferent de les prediccions o esdeveniments similars que es mostren al llargmetratge "Gravity". De fet, els resultats presentats al Comitè de Coordinació de les deixalles espacials interinstitucionals (IADC) a la sisena conferència europea sobre el tema van indicar un augment esperat de deixalles de només el 30% durant 200 anys amb llançaments continus.
Encara es produiran col·lisions, però la realitat estarà lluny de l'escenari catastròfic que alguns temen. El creixement de la quantitat de deixalles espacials es pot reduir a un nivell força modest. La proposta de l'IADC consisteix a difondre àmpliament i respectar estrictament les directrius de mitigació de deixalles espacials, especialment pel que fa a la neutralització de les fonts d'energia, que haurien de desenvolupar-se completament al final del vol i eliminar-les després del final del vol. No obstant això, des del punt de vista de l'IADC, l'augment esperat de la quantitat de residus, malgrat els esforços en curs, encara requereix la introducció de mesures addicionals per combatre els factors de risc existents.
No hi ha progrés?
Es va observar un interès significatiu per la recuperació de l’entorn espacial nou anys després de la publicació de l’obra de Liouville i Johnson. En particular, s'han pres mesures a tot el món per desenvolupar mètodes per eliminar objectes de l'òrbita terrestre baixa. L’Agència Espacial Europea, per exemple, va anunciar recentment la seva intenció d’assegurar el suport del govern per al llançament d’una nau espacial europea en la propera dècada. L’agència ha dut a terme nombrosos estudis per determinar formes racionals i fiables d’assolir l’objectiu. Un element clau de la planificació van ser els models informàtics de l’espai de deixalles, que van demostrar que es podia evitar el creixement de les deixalles eliminant etapes de naus espacials o coets específics. En les simulacions per ordinador, aquests objectes s’identifiquen com els més propensos a les col·lisions, de manera que, després de treure’ls de l’òrbita, el nombre de col·lisions hauria de disminuir bruscament, cosa que evitarà l’aparició de nous residus com a conseqüència de la dispersió de deixalles.
Han passat gairebé deu anys des de la publicació del treball de Liouville i Johnson, i sorprèn que a nivell internacional o nacional no hi hagi principis metodològics que defineixin clarament mesures per eliminar les conseqüències de la contaminació de l’espai proper a la Terra. Sembla que hi ha certa apatia pel que fa al desenvolupament d’un procediment d’eliminació de deixalles, tot i les demandes d’acció. Però, és realment així?
De fet, la situació no és tan senzilla com sembla. Pel que fa al procediment d'eliminació de deixalles espacials, hi ha algunes preguntes fonamentals que encara s'han de respondre. Les qüestions relacionades amb la propietat, la rendició de comptes i la transparència són especialment preocupants. Per exemple, moltes de les tecnologies que s’ofereixen per eliminar els residus també es poden utilitzar per eliminar o desactivar una nau espacial activa. Per tant, es pot esperar acusacions que aquestes tecnologies són armes. També hi ha preguntes sobre el cost d’un programa consistent d’eliminació d’escombraries. Alguns tècnics ho han estimat en desenes de bilions de dòlars.
Tanmateix, potser la raó més important de la manca de principis metodològics adequats rau en el fet que encara no sabem com es realitza la recuperació, amb la qual cosa a la pràctica entenem la purificació de l’espai exterior. Però això no vol dir que no sabem quines tecnologies necessitem.
Els algorismes per a ús puntual ja s’han desenvolupat pràcticament. El veritable problema sorgeix d'una tasca aparentment senzilla: determinar els residus "correctes" que cal eliminar de l'òrbita. I fins que no puguem resoldre aquest problema, sembla que no podrem recuperar espai.
Jugant a restes
Per adonar-nos de la naturalesa problemàtica de resoldre una tasca tan aparentment senzilla com identificar les escombraries que cal eliminar, fem servir l’analogia d’un joc amb un joc de 52 cartes de joc normals. En aquesta analogia, cada mapa representa un objecte a l'espai exterior que potser voldríem eliminar per evitar una col·lisió. Un cop repartides les cartes, col·loquem cada carta individualment cara avall sobre la taula. El nostre objectiu ara és intentar identificar els asos i eliminar-los de la taula, ja que aquestes targetes representen satèl·lits o altres objectes grans de deixalles espacials que poden arribar a participar en la col·lisió en algun moment del futur. Podem eliminar tantes cartes de la taula com vulguem, però sempre que retirem una targeta, hem de pagar 10 $. A més, a mesura que ens allunyem, no tenim dret a mirar el mapa (si s’elimina un satèl·lit de l’òrbita, no podem dir amb certesa què podria convertir-se exactament en participant a la col·lisió). Finalment, hem de pagar 100 dòlars per cada as que quedi sobre la taula, que representa les pèrdues potencials derivades de les col·lisions que impliquen els nostres satèl·lits (en realitat, el cost de substituir un satèl·lit pot oscil·lar entre 100.000 i 2.000 milions de dòlars).
Bé, com podem resoldre aquest problema? Al revers, totes les cartes són iguals, de manera que no hi ha manera d’indicar on són els asos i l’única manera d’assegurar-nos que hem esborrat tots els asos és esborrar totes les cartes de la taula. En el nostre exemple, això costarà un màxim de 520 dòlars. A l’espai exterior, ens enfrontem al mateix problema: no sabem exactament quins objectes poden estar involucrats en col·lisions, però és massa costós eliminar-los tots, de manera que hem de triar. Suposem que hem triat: treure una targeta per valor de 10 dòlars, quina és la probabilitat que eliminem un as? Bé, la probabilitat que la carta sigui un as és divisible per 52, és a dir, aproximadament el 0, el 8 o el 8 per cent. Per tant, la probabilitat que la carta no sigui un as és del 92 per cent. Aquesta és la probabilitat que malgastem els nostres 10 dòlars.
Què passa si aquesta vegada agafem una segona carta (que ens costarà 10 dòlars més)? La probabilitat que la segona carta sigui un as depèn de si la primera carta era un as. Si fos així, la probabilitat que la segona carta sigui també un as es divideix en tres per 51 (perquè ara només hi ha tres asos a la baralla, que ha disminuït en una carta). Si la primera carta no és un as, llavors la probabilitat que la segona carta sigui un as és quatre dividits per 51 (perquè encara hi ha quatre asos a la baralla més petita).
Podem utilitzar aquest mètode per determinar la probabilitat d’eliminar tots dos asos; simplement multiplicem les probabilitats per trobar la resposta: 4/52 vegades 3/51, cosa que ens dóna una probabilitat de 0,0045 o 0,45 per cent per valor de 20 dòlars per dues cartes. eliminat. Poc encoratjador.
Tot i això, també podem determinar la probabilitat d’eliminar almenys un dels asos. Després de treure dues cartes, hi ha un 15% de probabilitats que eliminem amb èxit almenys un dels asos. Sona més prometedor, però ara les probabilitats tampoc són molt bones.
Resulta que per augmentar les possibilitats de treure almenys un dels asos, hem d’eliminar més de nou cartes (per valor de 90 dòlars) o més de 22 cartes (per un valor de 220 dòlars) si volem estar segurs del 90% que hem eliminat un dels asos. Fins i tot si ho aconseguim, encara hi ha tres asos sobre la taula, de manera que, en total, hem de pagar 520 dòlars, que coincidentment és la mateixa quantitat que hauríem de pagar si haguéssim triat l'opció amb la retirada de totes les cartes.
Els jocs s’han acabat
Tornant de la nostra analogia a l'entorn espacial real, la situació sembla ser més alarmant. Actualment, aproximadament 20.000 objectes són rastrejats en òrbita mitjançant la xarxa d’estacions d’observació espacial dels Estats Units, amb aproximadament un sis per cent d’aquests objectes que pesen més d’una tona, cosa que podria participar hipotèticament en una col·lisió i que potser voldríem eliminar … En l’analogia de les cartes, el nostre problema és que la part posterior de totes les cartes és la mateixa i que la probabilitat que un sigui un as de piques és la mateixa que la probabilitat que l’altre també sigui un as. No hi ha manera d’identificar les cartes que vulgueu i eliminar-les de la taula. En realitat, les nostres possibilitats d’evitar una col·lisió són molt més altes que en un joc de cartes, ja que en òrbita podem veure la probabilitat que alguns objectes estiguin implicats en col·lisions i podem centrar la nostra atenció en ells. Per exemple, els objectes que es troben en òrbites densament poblades, com l’heliosincrònica, a altituds compreses entre els 600 i els 900 quilòmetres, tenen més probabilitats d’estar implicats en col·lisions a causa de la congestió d’aquesta zona. Si centrem la nostra atenció en objectes similars (i altres en òrbites de congestió similar) i tenim en compte les prediccions de la possibilitat de la seva col·lisió, resulta que hem d’eliminar uns 50 objectes per reduir el nombre esperat de col·lisions catastròfiques només una unitat, que es desprèn dels resultats de la investigació realitzats per membres de l'agència espacial IADC.
I resulta que, fins i tot si una sola nau espacial pot netejar diversos objectes (i cinc objectius semblen ser una alternativa versàtil), molts vols –sovint desafiants i ambiciosos– només s’han de fer per evitar una col·lisió.
Per què no podem predir amb més precisió la probabilitat de col·lisions i eliminar només aquells objectes que sabem amb seguretat que seran perillosos? Hi ha molts paràmetres que poden afectar la trajectòria d’un satèl·lit, inclosa l’orientació del satèl·lit, tant si es tracta d’un moviment erràtic com d’un clima espacial (que pot afectar l’arrossegament experimentat pels satèl·lits). Fins i tot petits errors en els valors inicials poden provocar grans discrepàncies en els resultats del càlcul de la posició del satèl·lit en comparació amb la realitat, i després d’un període relativament curt. De fet, fem servir la mateixa tècnica que els predictors: fem servir models per generar la probabilitat de resultats específics, però no el fet que mai s’obtinguin aquests resultats.
Per tant, disposem de tecnologies que es poden utilitzar de tant en tant per eliminar restes espacials. Aquesta és la posició adoptada per l'Agència Espacial Europea amb la seva missió prevista e. Deorbit, però encara hi ha problemes que s'han de resoldre per identificar els objectes més adequats per eliminar. Aquests problemes s’han d’abordar abans que es puguin posar a la disposició de les directrius i principis metodològics necessaris els interessats a preparar un programa d’eliminació de deixalles espacials a llarg termini que sigui essencial per a una efectiva remediació ambiental.
Els principis metodològics en termes de llocs específics, el seu nombre, requisits i restriccions són essencials per augmentar la probabilitat que els esforços per remeiar l’entorn siguin eficaços i valguin la pena. Per desenvolupar aquests principis metodològics, hem de reconsiderar les nostres expectatives irracionals d’un resultat favorable.